Q:

given that y = sin(x+y),find the derivative when (x,y)=(Ο€,0)​

Accepted Solution

A:
Answer:Shown in the explanationStep-by-step explanation:Recall that an implicit function is a relation given by the form:[tex]{\displaystyle R(x_{1},\ldots, x_{n})=0}[/tex]Where [tex]R[/tex] is a function of two or more variables. In this case, that function is:[tex]y = sin(x+y)[/tex]and is implicit because we can define it as:[tex]y-sin(x+y)=0[/tex] having two variables.So, let's take the derivative:[tex]\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\sin \left(x+y\right)\right) \\ \\[/tex]Applying chain rule:[tex]\frac{d}{dx}\left(\sin \left(x+y\right)\right)=\cos \left(x+y\right)\left(1+\frac{d}{dx}\left(y\right)\right)[/tex]But:[tex]\frac{d}{dx}\left(y\right)=y'[/tex]Therefore:[tex]y'=\cos \left(x+y\right)\left(1+y'\right)[/tex]Isolating [tex]y'[/tex]:[tex]\frac{d}{dx}\left(y\right)=y'=\frac{\cos \left(x+y\right)}{1-\cos \left(x+y\right)}[/tex]When [tex](x,y)=(\pi,0)[/tex]:[tex]\frac{d}{dx}\left(y\right)|_{(\pi,0)}=\frac{\cos \left(\pi+0\right)}{1-\cos \left(\pi+0\right)} \\ \\ \frac{d}{dx}\left(y\right)|_{(\pi,0)}=\frac{\cos \left(\pi\right)}{1-\cos \left(\pi\right)} \\ \\ \frac{d}{dx}\left(y\right)|_{(\pi,0)}=\frac{-1}{1-(-1)} \\ \\ \boxed{\frac{d}{dx}\left(y\right)|_{(\pi,0)}=-\frac{1}{2}}[/tex]